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Abstract. Spontaneous radiation emitted from an electron undergoing betatron mo-
tion is a plasma focusing channel is analyzed and applications to plasma wakefield
accelerator experiments and to the ion channel laser (ICL) are discussed. Important
similarities and differences between a free electron laser (FEL) and in an ICL are de-
lineated. It is shown that the frequency of spontaneous radiation is a strong function
of the betatron strength parameter aβ , which plays a similar role to that of the wiggler
strength parameter in a conventional FEL. For aβ >∼ 1, radiation is emitted in nu-
merous harmonics. Furthermore, aβ is proportional to the amplitude of the betatron
orbit, which varies for every electron in the beam. This places serious limits on the
possibility of realizing an ICL.

INTRODUCTION

The propagation of electrons beams through plasmas is relevant to a variety of
advanced accelerator [1] and novel radiation source applications [2]. Presently two
experiments are underway at the Stanford Linear Accelerator Center (SLAC) that
explore the interaction of an intense electron bunch with a plasma. These are the
E-150 plasma lens experiment [3] and the E-157 plasma wakefield experiment [4].
In the E-157 experiments, a 30 GeV electron beam of 2 × 1010 electrons in a 0.65
mm long bunch is propagated through a 1.4 m long lithium plasma with an electron
density up to 2 × 1014 cm−3. The electron bunch propagates through the plasma
in the so-called blowout regime [5], i.e., the initial beam density is greater than the
plasma density. In this regime, the head of the bunch expels the plasma electrons
and leaves behind a nearly uniform ion channel. The bunch length and plasma
density are chosen such that the blown-out plasma electrons come crashing back
to the axis near the tail of the bunch, thus driving a very large axial electric field,
on the order of several 100 MV/m, that can accelerate the electrons in the tail of
the bunch.

One consequence of operating in the blowout regime is that the main body of
the electron bunch resides in the nearly uniform ion channel, since the plasma



electrons are blown out to approximately the plasma skin depth, k−1
p = c/ωp, which

is typically much greater than the bunch radius, where ωp = (4πnee
2/mec

2)1/2 is
the plasma frequency and ne is the electron plasma density. Associated with the
ion channel are very strong transverse fields, on the order of several thousand tesla
per meter, that subsequently focus the body of the electron bunch. Since the
initial beam radius (50 − 100 µm) is much greater that the matched beam radius
(∼ 5 µm), the beam radius will undergo betatron oscillations as it propagates
through the plasma [2], [3]. In the blowout regime, the radial space charge electric
field is given [3] by Er = (eme/c

2)k2
pr/2. At the edge of the beam, r = rb, this can

be written in practical units as

Er[MV/m] = 9.06× 10−15ne[cm
−3]rb[µm]. (1)

Likewise, in the blowout regime, the betatron wavelength is given by λβ =
(2γ)1/2λp, where γ is the relativistic factor of the electron and λp = 2π/kp is the
plasma wavelength, which can be written as

λp[cm] = 3.34× 106(ne[cm
−3])−1/2. (2)

Time integrated optical transition radiation has been used to study the transverse
beam profile dynamics in the E-157 experiments [6]. Up to three betatron oscilla-
tions of the beam radius has been observed.

In addition to the blowout regime of the plasma wakefield accelerator, an
accelerated electron bunch will experience transverse focusing forces in typical
plasma-based accelerator configurations, such as the laser wakefield accelerator
[1]. For example, in the laser wakefield accelerator that operates in the linear
regime, the wakefield is often described by an electrostatic potential of the form
Φ = Φ0 exp(−r2/r2

p) cos kp(z− ct), where rp is the radius of the wake and is propor-
tional to radius of the drive beam. Notice that the axial electric field Ez = −∂Φ/∂z
and the radial electric field Er = −∂Φ/∂r are phased such that there exists a π/2
region of axial phase kp(z− ct) that is both accelerating and focusing. An electron
residing off-axis will undergo radial betatron oscillations about the axis due to the
transverse focusing force of the wakefield. The magnitude of the focusing field near
the axis is given by |Er| = 2rΦ0/r

2
p, assuming cos kp(z − ct) = 1, and the betatron

wavelength is given by λβ = πrp(2γ/Φ̂0)
1/2, where Φ̂0 = eΦ0/mec

2 is the normalized
amplitude of the wakefield. The density perturbation on axis associated with the
wake is given by δne/ne = −Φ̂0(1 + 4/k2

pr
2
p) cos kp(z − ct). Electron blowout near

the axis occurs when Φ̂0 = k2
pr

2
p/4, assuming kprp/2 < 1.

As an electron undergoes betatron oscillations in a plasma focusing channel, it
will emit synchrotron radiation [7]. In the limit of a small amplitude betatron
oscillation, i.e., an electron displaced slightly from the axis, the wavelength of the
synchrotron radiation is given by λ = λβ/2γ

2, where λβ is the wavelength of the
betatron oscillation and γ is the relativistic factor of the electron. For plasma-based
accelerators, this can easily be in the hard x-ray regime. For the E-157 experiment,
λβ ∼ 0.8 m and γ = 6× 104, such that λ ∼ 0.1 nm.



The betatron motion in a focusing channel also forms the basis of the ion channel
laser [2]. In the ion channel, radiation at the resonant wavelength λ = λβ/2γ

2

can feed back on the electron beam, leading to axial bunching of the beam, and
coherent amplification of the radiation. The amplification process is analogous to
that in a free electron laser, with the betatron motion analogous to the wiggler
motion in a free electron laser (FEL) [8]. It has been suggested that the ICL
mechanism can further enhance the spontaneous synchrotron radiation in the E-
157 experiments [9], thus leading to partially coherent radiation near the 0.1 nm
region. It is necessary that the details of the single particle synchrotron radiation
in a plasma focusing channel be well understood, in order to access the prospects
for the generation of self-amplified spontaneous emission (SASE) in an ICL.

In this article, spontaneous radiation emitted from an electron undergoing beta-
tron motion in a plasma focusing channel is analyzed starting from basic principles.
Application of these results to the E-157 experiment and to the ICL are examined.
Important similarities and differences between SASE in an FEL and in an ICL are
delineated. It is shown that the spontaneous radiation emitted along the axis of a
plasma focusing channel from a single electron occurs near the resonant frequency
ωn = 2γ2

z0nωβ/(1 + aβ/2)1/2, where γz0 is the initial gamma factor for the electron
entering the channel, n is the harmonic number, ωβ = ckβ = 2πc/λβ is the be-
tatron frequency, aβ = γz0kβrβ is the betatron strength parameter, and rβ is the
amplitude of the betatron orbit. The role of the betatron strength parameter aβ is
analogous to that of the wiggler strength parameter aw (or Kw) in FEL physics. In
Ref. [2], the ICL was considered only in the limit a2

β � 1. When a2
β � 1, radiation

is emitted primarily at the fundamental frequency ω = 2γ2
z0ωβ and is independent

of aβ. For aβ >∼ 1, however, radiation is emitted in numerous harmonics in which
the resonant frequency is a strong function of aβ. This is the case in the E-157
experiments, in which aβ ∼ 2−50. In an ideal FEL, the wiggler strength parameter
aw is a constant (a function of only the magnetic field of the wiggler) for all of the
beam electrons. However, in an ICL, aβ = γz0kβrβ depends on both the electron
energy γz0 and the betatron amplitude rβ. Since rβ, and hence aβ, is different
for every electron in a typical beam, this places serious limits on the possibility of
realizing a SASE ICL.

ELECTRON MOTION IN PLASMA FOCUSING
CHANNELS

The electron motion in a plasma focusing channel is governed by the relativistic
Lorentz equation, which may be written in the form

du/dct = ∇Φ̂ (3)

where Φ̂ = eΦ/mec
2 is the normalized electrostatic potential of the focusing chan-

nel, u = p/mec = γβ is the normalized electron momentum, and γ = (1 +u2)1/2 =



(1− β2)−1/2 is the relativistic factor. Here only the transverse focusing force of the
plasma is considered. Near the axis, r2 � r2

0, the space charge potential is assumed
to have the form

Φ̂ = Φ̂0(1− r2/r2
0), (4)

such that the normalized radial electric field is Êr = −∂Φ̂/∂r = 2Φ̂0r/r
2
0, where Φ̂0

and r0 are constants. The electrostatic potential is related to the electron plasma
density by ∇2Φ̂ = k2

p(ne/n0 − 1), where a uniform background of plasma ions of
density n0 is assumed. The maximum focusing field occurs in the when the plasma
electrons are completely expelled (blown out) from the channel, ne = 0. Notice

that in the blowout regime, Êr = k2
pr/2, hence, Φ̂0/r

2
0 ≤ k2

p/4.
Equation (4) implies the existence of two constants of the motion, duz/dt = 0

and d(γ − Φ̂)/dt = 0. Inside the focusing channel, the electron orbits (assuming
the electron orbit lies in the x-z plane) are given by

β̃x � kβrβ cos(kβct), (5)

x̃ � rβ sin(kβct), (6)

β̃z � βz0
(
1− k2

βr
2
β/4

)
− βz0(k

2
βr

2
β/4) cos(2kβct), (7)

z̃ � z0 + βz0
(
1− k2

βr
2
β/4

)
ct− βz0(kβr

2
β/8) sin(2kβct), (8)

where

kβ = (2Φ̂0/γz0r
2
0)

1/2 (9)

is the betatron wavenumber, rβ is the constant amplitude of the betatron orbit,
uz = uz0, γz0 = (1 + u2

z0)
1/2, βz0 = uz0/γz0 and z0 is a constant. Equations (5)-(8)

are the leading order contributions to the orbits, assuming k2
βr

2
β/2 � 1. Notice

that in the blowout regime Φ̂0 = k2
pr

2
0/4 and the betatron wavenumber is given by

kβ = kp/(2γz0)
1/2.

For an ensemble of particles comprising an electron beam, the evolution of the
RMS beam radius rb evolves via envelope equation [10]

d2rb/dct
2 = ε2nγ

−2r−3
b − k2

βrb, (10)

where εn � γrbθb is the normalized beam emittance, θb is the RMS beam angle,
and γmec

2 is the beam energy, where the effects of finite energy spread and space
charge have been neglected. A matched beam occurs when d2rb/dct

2 = 0, i.e., at a
matched radius given by

rbm = (εn/γkβ)
1/2, (11)

at which point the expansion of the beam due to finite emittance is balanced by
the focusing forces of the plasma channel. For parameters typical of the E-157
experiment (εn = 10 mm-mrad, γ = 6× 104, and λβ = 0.82 m), rbm = 4.7 µm.



SYNCHROTRON RADIATION

The energy spectrum of the radiation emitted by a single electron in an arbitrary
orbit r̃(t) and β̃(t) can be calculated from the Lienard-Wiechert potentials [11],

d2I

dωdΩ
=
e2ω2

4π2c

∣∣∣ ∫ T/2

−T/2
dt

[
n× (n× β̃)

]
exp [iω(t− n · r̃/c)]

∣∣∣2, (12)

where d2I/dωdΩ is the energy radiated per frequency, ω, per solid angle, Ω, dur-
ing the interaction time, T , and n is a unit vector pointing in the direction of
observation. It is convenient to introduce the spherical coordinates (r, θ, φ) where
x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ, and n is along the er direction. Using
the betatron orbits given above, the radiation spectrum can be calculated with
conventional techniques [12]. The resulting spectrum is given by

d2I

dωdΩ
=
∞∑
n=1

e2k2

4π2c

(
sin k̄L/2

k̄

)2

·
[
C2
x(1− sin2 θ cos2 φ) + C2

z sin2 θ − CxCz sin 2θ cosφ
]
, (13)

where

Cx = kβrβ
∞∑

m=−∞
Jm(αz) [Jn+2m−1(αx) + Jn+2m+1(αx)] , (14)

Cz = βz0
∞∑

m=−∞
Jm(αz){2(1 + k2

βr
2
β/4)Jn+2m(αx)

− (k2
βr

2
β/4) [Jn+2m−2(αx) + Jn+2m+2(αx)] }, (15)

αz =
n(k/kn)(a

2
β/4) cos θ[

(1 + a2
β/2) cos θ + 2γ2

z0(1− cos θ)
] , (16)

αx =
n(k/kn)2γz0aβ sin θ cosφ[

(1 + a2
β/2) cos θ + 2γ2

z0(1− cos θ)
] , (17)

k̄ = α0k − nkβ, (18)

α0 = 1− βz0(1− k2
βr

2
β/4) cos θ, (19)

and
aβ = γz0kβrβ (20)

is the betatron strength parameter. Here, L = cT is the interaction length, k =
ω/c is the radiation wavenumber, n is the harmonic number, and Jm are Bessel
functions. For parameters typical of the E-157 experiment (γ = 6× 104 and λβ =
0.82 m), aβ = 45 for rβ = rb = 100 µm (typical unmatched beam radius) and
aβ = 2.1 for rβ = rbm = 4.7 µm (typical matched beam radius).



Provided Nβ � 1, radiation is emitted in a series of harmonics and is confined
in a narrow bandwidth about the resonant frequency of each harmonic, where
Nβ = L/λβ is the number of betatron periods that the electron undergoes. The
frequency width of the radiation spectrum for a given harmonic is determined by
the resonance function Rn(k), where

Rn(k) =

(
sin k̄L/2

k̄L/2

)2

. (21)

This function is sharply peaked about the resonant frequency, ωn = ckn, given by
k̄ = 0,

kn =
nkβ
α0

� 2γ2
z0nkβ[

(1 + a2
β/2) cos θ + 2γ2

z0(1− cos θ)
] , (22)

where γ2
z0 � 1 was assumed. The width of the spectrum, ∆ω, about ωn is given

by ∆ω/ωn = 1/nNβ. Furthermore, Rn(k) → ∆ωnδ(ω − ωn) as Nβ → ∞. The
angular width ∆θn within which can be found radiation with frequencies in ∆ω
about ωn, for a single harmonic n, is given by ∆θn � (2∆ω/M0ωn)

1/2. Typically,
for frequencies of interest, the synchrotron radiation is confined to a cone angle
θ2 � 1 and the resonant frequency can be approximated by

ωn � nM0ckβ/(1 +M0θ
2/2), (23)

where M0 = 2γ2
z0/(1 + a2

β/2) is the relativistic Doppler upshift factor.

On-Axis Radiation

Of particular interest is the radiation emitted along the axis. Along the axis,
θ = 0, only the odd harmonics are finite, i.e., the even harmonics vanish. Setting
θ = 0 in the above expressions gives, for the nth odd harmonic, αx = 0, αz = αn,
and

d2In(0)

dωdΩ
= 2e2 ω

ωn
kβNβM

2
0GnFn =

4e2

c

ω

ωn

γ2
z0N

2
βRnFn

(1 + a2
β/2)

, (24)

where
Fn(aβ) = nαn

[
J(n−1)/2(αn)− J(n+1)/2(αn)

]2
(25)

is the harmonic amplitude function,

αn =
n(ω/ωn)a

2
β/4

(1 + a2
β/2)

, (26)

and

Gn(ω) =
Rn(k)

∆ωn
=

1

∆ωn

sin2[πnNβ(ω/ωn − 1)]

[πnNβ(ω/ωn − 1)]2
(27)



is the frequency spectrum function with the resonant frequency ωn = nM0ckβ.
The energy radiated in the nth backscattered harmonic depends on the func-

tion Fn(aβ), Eq. (25). For high harmonics, n � 1, Fn becomes significant when
a2
β � 1. For a2

β � 1, only the fundamental, n = 1, is significant. Figure 1 shows

a plot of d2I(0)/dωδΩ versus ω/2γ2
z0ωβ for the first four harmonics (n = 1, 2,

3, and 4) with Nβ = 4. The solid curve shows the radiation from a single elec-
tron with aβ = γz0kβrβ = 4, indicating that radiation is emitted in well-defined
harmonics. The dashed (dotted) curve shows the spectrum integrated over a flat-
top (Gaussian) distribution of betatron amplitudes rβ with a rms value satisfying
aβ,rms = γz0kβrβ,rms = 4. Figure 2 shows a blow-up of Fig. 1. The effect of averag-
ing over a distribution of electron orbits is clearly to smooth out the spectrum, since
the frequency of the radiation emitted by a single electron is a strong function of
aβ. Note that the fall-off on the right of the dashed (dotted) curve in Figs. 1 and 2
is artificial, since only the first four harmonic terms are included in this calculation
of the spectrum.

An expression for the number of photons (Nn) radiated per electron can be
obtained for photons in a narrow bandwidth near the resonant frequency by dividing
Eq. (24) by the energy per photon (h̄ωn). The total number of photons radiated
per electron in the in the intrinsic bandwidth ∆ωn = ωn/nNβ about ωn is given
by integrating over this narrow frequency band and multiplying by the solid angle
2π(∆θ2/2)1/2, where ∆θ � (2∆ωn/M0ωn)

1/2, which gives

Nn � 4παf (∆ωn/ωn)(Nβ/n)Fn(aβ), (28)

where αf is the fine structure constant.

Ultra-Intense Behavior

For values of a2
β � 1, the scattered radiation will be narrowly peaked about

the fundamental resonant frequency, ω1, given by Eq. (22) with n = 1. As aβ
approaches unity, scattered radiation will appear at harmonics of the resonant
frequency as well, ωn = nω1. When aβ � 1, high harmonic (n � 1) radiation
is generated and the resulting synchrotron radiation spectrum consists of many
closely spaced harmonics. Finite variations in the parameter aβ = γz0kβrβ within an
electron beam can broaden the linewidth and cause the spectrum to overlap. Hence,
in the ultra-intense limit, i.e., aβ � 1, the gross spectrum appears broadband, and
a continuum of radiation is generated which extends out to a critical frequency,
ωc, beyond which the radiation intensity diminishes. The critical frequency can be
written as ωc = ncM0ωβ, where nc is the critical harmonic number. It is possible
to calculate nc by examining the radiation spectrum, Eqs. (13)-(15), in the ultra-
intense limit, aβ � 1.

Asymptotic properties of the radiation spectrum for large harmonic numbers,
n� 1, can be analyzed using conventional methods [12]. In particular, the asymp-
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FIGURE 1. Normalized spectrum d2I(0)/dωδΩ (arbitrary units) versus ω/2γ2
z0ωβ for the first

four harmonics (n = 1, 2, 3, and 4) with Nβ = 4. The solid curve shows the radiation from a
single electron with aβ = γz0kβrβ = 4. The dashed (dotted) curve shows the spectrum integrated
over a flat-top (Gaussian) distribution of betatron amplitudes rβ with aβ,rms = γz0kβrβ,rms = 4.
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FIGURE 2. Blow-up of Fig. 1.

totic spectrum in the vertical direction (φ = π/2) is given by

d2I

dωdΩ
� Nβ

6e2

π2c

γ2
z0ζ

2

(1 + γ2
z0θ

2)

[
γ2
z0θ

2

(1 + γ2
z0θ

2)
K2

1/3(ζ) +K2
2/3(ζ)

]
, (29)

where

ζ =
ω

ωc
(1 + γ2

z0θ
2)3/2, (30)

ωc = ncM0ωβ � 3aβγ
2
z0ωβ (31)
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FIGURE 3. The function Y (ξ) = ξ2K2
2/3(ξ) versus ω/2γ2

z0ωβ . The solid curve shows the
radiation from a single electron with aβ = γz0kβrβ = 10. The dashed (dotted) curve shows
the spectrum integrated over a flat-top (Gaussian) distribution of betatron amplitudes rβ with
aβ,rms = γz0kβrβ,rms = 10.
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FIGURE 4. Figure 3 plotted on a log scale.

is the critical frequency,
nc � 3a3

β/4 (32)

is the critical harmonic number, and M0 � 4γ2
z0/a

2
β. For E-157-like parameters

(γ = 6 × 104, λβ = 0.82 m, and aβ = 45), nc � 6.8 × 104 and λc = 2πc/ωc �
1.7× 10−12 m.

Along the axis θ = 0, d2I(0)/dωdΩ ∼ ξ2K2
2/3(ξ), where ξ = ω/ωc. The function

Y (ξ) = ξ2K2
2/3(ξ) is maximum at ξ = 1/2 and decreases rapidly for ξ > 1. The

peak intensity occurs along the axis θ = 0, at approximately the critical frequency,



ω � ωc, i.e., n � nc = 3a3
β/4. Half the total power is radiated at frequencies

ω < ωc/2 and half at ω > ωc/2. For harmonics below nc (ω � ωc), the radiation
intensity increases as (ω/ω0)

2/3, and above nc (ω � ωc), the radiation intensity
decreases exponentially as exp(−2ω/ωc). Furthermore, for ω � ωc, the scattered
radiation at a fixed frequency is confined to an angular spread ∆θ = (ωc/ω)1/3/γz0
about θ = 0, whereas for ω > ωc, ∆θ = (ωc/3ω)1/2/γz0. The average angular
spread for the frequency integrated spectrum in the vertical direction (φ = π/2) is
is θv = 〈θ2〉1/2 ∼ 1/γz0. In the horizontal direction (φ = 0), emission is confined to
the angle θh ∼ aβ/γz0.

A plot of the function Y (ξ) = ξ2K2
2/3(ξ) versus ω/2γ2

z0ωβ is shown in Fig. 3 (linear

scale) and Fig. 4 (log scale). The solid curve shows the radiation from a single
electron with aβ = γz0kβrβ = 10. The dashed (dotted) curve shows the spectrum
integrated over a flat-top (Gaussian) distribution of betatron amplitudes rβ with
a rms value satisfying aβ,rms = γz0kβrβ,rms = 10. To calculate these averages, the
quantity ξ = ω/ωc has been approximated by ξ � (ω/2γ2

z0ωβ)(1 + 3aβ/2)−1, since
the asymptotic form for the spectrum is not accurate when aβ < 1, i.e., Figs. 3 and
4 are inaccurate in the region ω/2γ2

z0ωβ
<∼ 1.

RADIATED POWER AND ELECTRON ENERGY LOSS

The power radiated by a single electron, Ps, undergoing relativistic quiver motion
in an intense laser field can be calculated from the relativistic Larmor formula [11]

Ps = (2e2/3c)γ2
[
(du/dt)2 − (dγ/dt)2

]
. (33)

Using the orbits described above, the power radiated by a single electron undergoing
betatron motion is given by

〈Ps〉 � remec
3γ2
z0k

2
βa

2
β/3, (34)

where an averaging was performed over the betatron period, γ2
z0 � 1 was assumed,

and re = e2/mec
2 is the classical electron radius.

The rate at which a single electron loses energy due to radiating is given by
W ′
loss = 〈Ps〉/c, i.e.,

W ′
loss � remec

2γ2
z0k

2
βa

2
β/3. (35)

In the blowout regime, kβ ∼ n
1/2
0 γ

−1/2
0z , and the rate of energy loss scales as W ′

loss ∼
n2

0γ
2
z0r

2
β. In addition, if the betatron amplitude is equal to the matched beam

radius rb = (εn/γz0kβ)
1/2, the energy loss scales as W ′

loss ∼ εnγ
3
z0k

3
β ∼ εnn

3/2
0 γ

3/2
z0 .

For example, in the blowout regime at a density n0 = 2 × 1014 cm−3 (λp = 0.24
cm) and a beam energy of γz0 = 6× 104, an electron with a betatron amplitude of
rβ = 100 µm (aβ = 45) would lose energy at a rate of W ′

loss = 0.2 MeV/m.



ION CHANNEL LASER

Under special conditions, e.g., sufficiently high electron beam quality, self-
amplified spontaneous emission (SASE) can occur whereby the incoherent syn-
chrotron radiation emitted by the electrons is amplified via the ion channel laser
(ICL) mechanism [2]. In the ICL instability, the radiation beats with the betatron
motion to create an axial v×B (i.e., ponderomotive) force that leads to bunching
of the electron beam and growth of the radiation field. This can lead to large levels
of semi-coherent or coherent radiation. In SASE, the incoherent, spontaneous ra-
diation acts as a seed for the instability, in a manner analogous to the SASE mode
of operation in a free electron laser (FEL) [8].

There are important differences between the ICL and FEL mechanisms, however,
that limit the SASE mode of operation. For electrons undergoing betatron motion
in a plasma focusing channel, the resonant frequency of the radiation emitted along
the axis is given by ω = 2γ2

z0nωβ/(1+a2
β/2), as indicated by Eq. (23). For an FEL,

the resonant frequency is ω = 2γ2
z0nωw/(1 + a2

w/2), where ωw = ckw = 2πc/λw,
λw is the wiggler wavelength, aw = eBw/kwmec

2 is the wiggler strength, and Bw is
the field amplitude of the wiggler magnet. In an ideal FEL, aw is a constant since
all the electrons experience the same value of Bw. This is contrast to the focusing
channel, in which aβ = γz0kβrβ is a function of both the electron energy γz0 and
the radial position of the electrons via the betatron amplitude rβ. If a mono-
energetic beam of finite radius is injected into a focusing channel (without any
special tapering), electrons at different radii will have different betatron amplitudes
rβ, different values of aβ, and hence different resonant frequencies.

Furthermore, for an ideal FEL with a planar wiggler of the form B =
Bw cos(kwz)ex, all of the the beam electrons wiggle in the same plane with the
same amplitude, i.e., u⊥ = aw cos(kwz)ex. Consequently, radiation emitted by all
the electrons will have similar polarization. This is contrast to the focusing chan-
nel, in which the betatron motion, and hence the synchrotron radiation, will have a
variety of polarizations in the x-y plane, depending on the position and angle of the
electron as it enters the channel. Hence, to amplify radiation of a given frequency
and polarization in a focusing channel, only those beam electrons with the proper
values of γz0 and rβ with be resonant with the radiation, and only a subset of these
will have the proper polarization. This is contrast to an ideal FEL, in which all the
electrons in a mono-energetic beam are resonant with the radiation field with the
proper polarization.

It is straightforward to quantify some the conditions necessary for SASE to occur
in a plasma focusing channel. In the following discussion, it is assumed that k2

βr
2
β �

1. Consider an ideal mono-energetic electron beam of radius rb injected into a
focusing channel such that the beam centroid is along the z axis. A electron
moving along the axis would have a betatron amplitude of rβ = 0, whereas an
electron residing at the edge of the beam would have a betatron amplitude of
rβ = rb. For the beam to emit radiation along the axis with a narrow bandwidth
∆ω/ω � 1, it is necessary that a2

β � 1 for all the electrons. This implies that the



radiation wavelength satisfy λ > πrb/γ. For a matched beam with a normalized
emittance εn, the matched-beam radius is given by rbm = (εn/γkβ)

1/2, and the
condition a2

β � 1 implies
λ� πεn/γ. (36)

It is interesting to note the similarity of this condition with that usually required
of a SASE FEL [8], λ > 4πεn/γ.

The condition ∆ω/ω � 1, however, is not sufficient for the SASE process to oc-
cur. A more stringent condition is that the normalized axial energy spread ∆γz/γz
be small compared to the so-called Pierce or gain parameter ρ, i.e., ∆γz/γz � ρ,
where by analogy with an FEL,

ρ =

[
aβkpb

4γ3/2kβ
F 2

∆(aβ)

]2/3

, (37)

where kpb = 4πnbe
2/mec

2, nb is the beam density, and

F∆(aβ) = J0

(
a2
β/4

1 + a2
β/2

)
− J1

(
a2
β/4

1 + a2
β/2

)
. (38)

In terms of the beam current Ib = ecπnbr
2
b , and evaluating the expression for ρ at

rβ = rb, gives

ρ =
(
IbF

4
∆/4γIA

)1/3
, (39)

where IA = mec
3/e = 17 kA. Using the equations of motion for an electron in a

focusing channel, Eqs. (5)-(8), the normalized energy spread is given by ∆γz/γz �
a2
β/4, for a beam with a centroid along the axis. Hence, ∆γz/γz < ρ implies a2

β < 4ρ

or λ > πrβ/(2γρ
1/2). For a matched beam, this gives

λ >
πεn
4γρ

. (40)

This is considerably more stringent that the usual FEL constraint λ > 4πεn/γ,
since typically ρ� 1. For the parameters of the E-157 experiment, ρ � 5× 10−3.

In principle, it may be possible to tailor the energy distribution and radial profile
of the beam such that a greater fraction of the beam electrons are in resonance
with the radiation field. For example, consider a mono-energetic, very narrow
beam of width ∆rb injected off-axis such that the centroid of the beam executes
betatron oscillations of amplitude rβ = rb0 with rb0 � ∆rb [13]. In this case,
all of the electrons in the beam would undergo approximately the same betatron
orbit and would have approximately the same value for aβ, i.e., the spread in aβ
is given by ∆aβ/aβ � ∆rb/rb0. In this case the condition ∆ω/ω � 1 implies
∆rb/rb0 � (1 + a2

β/2)/a2
β, which in principle, could be easily satisfied. The more

stringent condition, ∆γz/γz < ρ, implies ∆rb/rb0 < 2ρ/a2
β, which could be satisfied

for sufficiently small values of aβ.



Even if the condition ∆γz/γz < ρ is satisfied, it is not clear that the SASE process
would occur. In a conventional FEL, SASE requires that a number of conditions be
satisfied (in addition to ∆γz/γz < ρ) [8], i.e., εn < γλ/4π, Nβλβ � LG, LG < LR,
and Nβλ < Le, where Nβ is the number of betatron oscillations, Lg � 0.046λβ/ρ is
the gain length, LR = πw2

0/λ is the Rayleigh length of the radiation with spot size
w0, and Le is the electron bunch length. Furthermore, for the case of an ICL driven
by a narrow beam with a centroid undergoing betatron oscillations, it is likely that
the gain (i.e., ρ) is reduced since the geometric overlap between the electron beam
and the radiation is reduced, due to the betatron motion of the centroid. Such
novel ICL configurations require a detailed analysis.

SUMMARY

Spontaneous radiation emitted from an electron undergoing betatron motion is
a plasma focusing channel was analyzed starting from basic principles. Application
of these results to the E-157 experiment and to the ICL were examined. Impor-
tant similarities and differences between SASE in an FEL and in an ICL were
delineated. In particular, the spontaneous radiation emitted along the axis of a
plasma focusing channel from a single electron occurs near the resonant frequency
ωn = 2γ2

z0nωβ/(1 + a2
β/2)1/2. The role of the betatron strength parameter aβ is

analogous to that of the wiggler strength parameter aw (or Kw) in FEL physics. In
Ref. [2], the ICL was considered only in the limit a2

β � 1. When a2
β � 1, radiation

is emitted primarily at the fundamental frequency ω = 2γ2
z0ωβ and is independent

of aβ. For aβ >∼ 1, however, the resonant frequency is a strong function of aβ and
radiation is emitted in numerous harmonics extending out to the critical harmonic
number nc = 3a3

β/4. This is the case in the E-157 experiments, in which aβ ∼ 2−50.
In an ideal FEL, the wiggler strength parameter aw is a constant (a function of

only the magnetic field of the wiggler) for all of the beam electrons. However, in
an ICL, aβ = γz0kβrβ depends on both the electron energy γz0 and the betatron
amplitude rβ. Since rβ, and hence aβ, is different for every electron in a typical
beam, this places serious limits on the possibility of realizing a SASE ICL. For an
electron beam center about the axis with a radius rb and aβ(rb) > 1, the radiation
from the beam is no longer emitted at discrete harmonics as it would be from a single
electron with rβ = rb. Rather, since 0 < aβ <∼ aβ(rb) for the electrons in the beam,
the resulting radiation is in the form of a broad continuum as indicated by Figs. 1
and 2, even for the case of an initially mono-energetic beam. In the limit a2

β � 1,
the radiation from the beam could be nearly monochromatic at the fundamental
frequency. The condition a2

β � 1 implies λ� πεn/γ for a matched beam, which is
similar to the criterion λ > 4πεn/γ often quoted for a SASE FEL. The condition
a2
β � 1, however, is not sufficient to insure that the SASE ICL process will occur.

A more stringent condition for the occurrence of SASE is on the axial energy
spread of the beam within the focusing channel, i.e., ∆γz/γz � ρ, where ρ is the
effective Pierce (or gain) parameter. Again, since rβ varies across the beam, there



exists a large energy spread ∆γz/γz � a2
β/4. The condition ∆γz/γz � ρ implies

λ > πεn/(4γρ) for a matched beam. Since typically ρ � 1, this restriction on
the radiated wavelength λ > πεn/(4γρ) is much more stringent than that in a
conventional SASE FEL. Furthermore, the betatron orbits in a typical beam in a
focusing channel are not polarized in the same plane as they are in a conventional
FEL. This also can reduce the gain in a SASE ICL. These arguments, however,
assumed an untailored electron beam centered about the channel axis. It may be
possible to relax this constraint on the radiated wavelength in a SASE ICL by
appropriately tailoring the electron beam, for example, a narrow electron beam
injected off-axis such that all of the beam electron execute approximately the same
betatron orbit. Such novel ICL configurations require further analysis to access
their viability.

ACKNOWLEDGMENTS

The authors acknowledge useful conversations with the participants of the work-
ing group on plasma wakefield accelerators and with the members of the E-157
collaboration. This work was supported by the Department of Energy under con-
tract No. DE-AC-03-76SF0098.

REFERENCES

1. For a review see, E. Esarey et al., IEEE Trans. Plasma Sci. 24, 252 (1996).
2. D.H. Whittum, A.M. Sessler, and J.M. Dawson, Phys. Rev. Lett. 64, 2511 (1990);

D.H. Whittum, Phys. Fluids B 4, 730 (1992).
3. J. Ng et al., SLAC Preprint, SLAC-PUB-8501 (2000); SLAC E-150 web site, URL

http://www.slac.stanford.edu/exp/e150.
4. M.J. Hogan et al., Phys. Plasmas 7, 2241(2000); SLAC E-157 web site, URL

http://www.slac.stanford.edu/grp/arb/e157.
5. J.B. Rosenzweig et al., Phys. Rev. A 44, 6189 (1991).
6. P. Catravas et al., Proc. 1999 Particle Accelerator Conf., Ed. by A. Luccio and W.

Mackay (IEEE, Piscataway NJ, 1999), pp. 2111-2113.
7. W.A. Barletta et al., Nuc. Instr. Meth. A 423, 256 (1999).
8. Handbook of Accelerator Physics and Engineering, Edited by A.W. Chao and M.

Tigner (World Scientific, Singapore, 1999).
9. S. Wang and C. Joshi, private communication.

10. M. Reiser, Theory and Design of Charged Particle Beams (Wiley, New York, 1994).
11. J.D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), Chap.

14.
12. E. Esarey, S.K. Ride, and P. Sprangle, Phys. Rev. E 48, 3003 (1993).
13. In collaboration with the working group on plasma wakefield accelerators, this work-

shop.


